Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6x+1)(x^2+7x-9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^3+42x^2-54x+x^2+7x-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^3+43x^2-47x-9\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6x+1}\right) $ by each term in $ \left( x^2+7x-9\right) $. $$ \left( \color{blue}{6x+1}\right) \cdot \left( x^2+7x-9\right) = 6x^3+42x^2-54x+x^2+7x-9 $$ |
| ② | Combine like terms: $$ 6x^3+ \color{blue}{42x^2} \color{red}{-54x} + \color{blue}{x^2} + \color{red}{7x} -9 = 6x^3+ \color{blue}{43x^2} \color{red}{-47x} -9 $$ |