Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6x-7)^2-15& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}36x^2-84x+49-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}36x^2-84x+34\end{aligned} $$ | |
| ① | Find $ \left(6x-7\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 6x } $ and $ B = \color{red}{ 7 }$. $$ \begin{aligned}\left(6x-7\right)^2 = \color{blue}{\left( 6x \right)^2} -2 \cdot 6x \cdot 7 + \color{red}{7^2} = 36x^2-84x+49\end{aligned} $$ |
| ② | Combine like terms: $$ 36x^2-84x+ \color{blue}{49} \color{blue}{-15} = 36x^2-84x+ \color{blue}{34} $$ |