Tap the blue circles to see an explanation.
| $$ \begin{aligned}6x^3+3x^2-(x^3+8x^4)+3x^3-2x^2-5x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^3+3x^2-x^3-8x^4+3x^3-2x^2-5x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8x^4+5x^3+3x^2+3x^3-2x^2-5x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-8x^4+8x^3+x^2-5x\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^3+8x^4 \right) = -x^3-8x^4 $$ |
| ② | Combine like terms: $$ \color{blue}{6x^3} +3x^2 \color{blue}{-x^3} -8x^4 = -8x^4+ \color{blue}{5x^3} +3x^2 $$ |
| ③ | Combine like terms: $$ -8x^4+ \color{blue}{5x^3} + \color{red}{3x^2} + \color{blue}{3x^3} \color{red}{-2x^2} -5x = -8x^4+ \color{blue}{8x^3} + \color{red}{x^2} -5x $$ |