Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6w-5x)(w+2x+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6w^2+12wx+12w-5wx-10x^2-10x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6w^2+7wx-10x^2+12w-10x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6w-5x}\right) $ by each term in $ \left( w+2x+2\right) $. $$ \left( \color{blue}{6w-5x}\right) \cdot \left( w+2x+2\right) = 6w^2+12wx+12w-5wx-10x^2-10x $$ |
| ② | Combine like terms: $$ 6w^2+ \color{blue}{12wx} +12w \color{blue}{-5wx} -10x^2-10x = 6w^2+ \color{blue}{7wx} -10x^2+12w-10x $$ |