| $$ \begin{aligned}\frac{6m^2-2m-4}{4m^2-4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3m+2}{2m+2}\end{aligned} $$ | |
| ① | Simplify $ \dfrac{6m^2-2m-4}{4m^2-4} $ to $ \dfrac{3m+2}{2m+2} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{2m-2}$. $$ \begin{aligned} \frac{6m^2-2m-4}{4m^2-4} & =\frac{ \left( 3m+2 \right) \cdot \color{blue}{ \left( 2m-2 \right) }}{ \left( 2m+2 \right) \cdot \color{blue}{ \left( 2m-2 \right) }} = \\[1ex] &= \frac{3m+2}{2m+2} \end{aligned} $$ |