Tap the blue circles to see an explanation.
| $$ \begin{aligned}6a^2-7b+3c^3+4-(9a^2+6b-3c^3+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6a^2-7b+3c^3+4-9a^2-6b+3c^3-4 \xlongequal{ } \\[1 em] & \xlongequal{ }6a^2-7b+3c^3+ \cancel{4}-9a^2-6b+3c^3 -\cancel{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6c^3-3a^2-13b\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 9a^2+6b-3c^3+4 \right) = -9a^2-6b+3c^3-4 $$ |
| ② | Combine like terms: $$ \color{blue}{6a^2} \color{red}{-7b} + \color{green}{3c^3} + \, \color{orange}{ \cancel{4}} \, \color{blue}{-9a^2} \color{red}{-6b} + \color{green}{3c^3} \, \color{orange}{ -\cancel{4}} \, = \color{green}{6c^3} \color{blue}{-3a^2} \color{red}{-13b} $$ |