Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6-4x^2)(2x^2-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12x^2-18-8x^4+12x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8x^4+24x^2-18\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6-4x^2}\right) $ by each term in $ \left( 2x^2-3\right) $. $$ \left( \color{blue}{6-4x^2}\right) \cdot \left( 2x^2-3\right) = 12x^2-18-8x^4+12x^2 $$ |
| ② | Combine like terms: $$ \color{blue}{12x^2} -18-8x^4+ \color{blue}{12x^2} = -8x^4+ \color{blue}{24x^2} -18 $$ |