Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5x+5-2x)(4+7x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x+5)(7x+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}21x^2+9x+35x+15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}21x^2+44x+15\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{5x} +5 \color{blue}{-2x} = \color{blue}{3x} +5 $$Combine like terms: $$ \color{blue}{4} +7x \color{blue}{-1} = 7x+ \color{blue}{3} $$ |
| ② | Multiply each term of $ \left( \color{blue}{3x+5}\right) $ by each term in $ \left( 7x+3\right) $. $$ \left( \color{blue}{3x+5}\right) \cdot \left( 7x+3\right) = 21x^2+9x+35x+15 $$ |
| ③ | Combine like terms: $$ 21x^2+ \color{blue}{9x} + \color{blue}{35x} +15 = 21x^2+ \color{blue}{44x} +15 $$ |