Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5x+2)(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^2+20x+2x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^2+22x+8\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{5x+2}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{5x+2}\right) \cdot \left( x+4\right) = 5x^2+20x+2x+8 $$ |
| ② | Combine like terms: $$ 5x^2+ \color{blue}{20x} + \color{blue}{2x} +8 = 5x^2+ \color{blue}{22x} +8 $$ |