Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5x+1)(25x^2-5x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}125x^3-25x^2+5x+25x^2-5x+1 \xlongequal{ } \\[1 em] & \xlongequal{ }125x^3 -\cancel{25x^2}+ \cancel{5x}+ \cancel{25x^2} -\cancel{5x}+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}125x^3+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{5x+1}\right) $ by each term in $ \left( 25x^2-5x+1\right) $. $$ \left( \color{blue}{5x+1}\right) \cdot \left( 25x^2-5x+1\right) = \\ = 125x^3 -\cancel{25x^2}+ \cancel{5x}+ \cancel{25x^2} -\cancel{5x}+1 $$ |
| ② | Combine like terms: $$ 125x^3 \, \color{blue}{ -\cancel{25x^2}} \,+ \, \color{green}{ \cancel{5x}} \,+ \, \color{blue}{ \cancel{25x^2}} \, \, \color{green}{ -\cancel{5x}} \,+1 = 125x^3+1 $$ |