Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5x-2)(2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}10x^2+5x-4x-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10x^2+x-2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{5x-2}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{5x-2}\right) \cdot \left( 2x+1\right) = 10x^2+5x-4x-2 $$ |
| ② | Combine like terms: $$ 10x^2+ \color{blue}{5x} \color{blue}{-4x} -2 = 10x^2+ \color{blue}{x} -2 $$ |