Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5x-1)^2+3(5x-1)-2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}25x^2-10x+1+3(5x-1)-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}25x^2-10x+1+15x-3-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}25x^2+5x-2-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}25x^2+5x-4\end{aligned} $$ | |
| ① | Find $ \left(5x-1\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 5x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(5x-1\right)^2 = \color{blue}{\left( 5x \right)^2} -2 \cdot 5x \cdot 1 + \color{red}{1^2} = 25x^2-10x+1\end{aligned} $$ |
| ② | Multiply $ \color{blue}{3} $ by $ \left( 5x-1\right) $ $$ \color{blue}{3} \cdot \left( 5x-1\right) = 15x-3 $$ |
| ③ | Combine like terms: $$ 25x^2 \color{blue}{-10x} + \color{red}{1} + \color{blue}{15x} \color{red}{-3} = 25x^2+ \color{blue}{5x} \color{red}{-2} $$ |
| ④ | Combine like terms: $$ 25x^2+5x \color{blue}{-2} \color{blue}{-2} = 25x^2+5x \color{blue}{-4} $$ |