Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5x+5)(-4x^2+x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-20x^3+5x^2-25x-20x^2+5x-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-20x^3-15x^2-20x-25\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{5x+5}\right) $ by each term in $ \left( -4x^2+x-5\right) $. $$ \left( \color{blue}{5x+5}\right) \cdot \left( -4x^2+x-5\right) = -20x^3+5x^2-25x-20x^2+5x-25 $$ |
| ② | Combine like terms: $$ -20x^3+ \color{blue}{5x^2} \color{red}{-25x} \color{blue}{-20x^2} + \color{red}{5x} -25 = -20x^3 \color{blue}{-15x^2} \color{red}{-20x} -25 $$ |