Tap the blue circles to see an explanation.
| $$ \begin{aligned}5x^4y^2+8y^3-6xy-(8y^3+3xy-8y^4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^4y^2+8y^3-6xy-8y^3-3xy+8y^4 \xlongequal{ } \\[1 em] & \xlongequal{ }5x^4y^2+ \cancel{8y^3}-6xy -\cancel{8y^3}-3xy+8y^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^4y^2+8y^4-9xy\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 8y^3+3xy-8y^4 \right) = -8y^3-3xy+8y^4 $$ |
| ② | Combine like terms: $$ 5x^4y^2+ \, \color{blue}{ \cancel{8y^3}} \, \color{green}{-6xy} \, \color{blue}{ -\cancel{8y^3}} \, \color{green}{-3xy} +8y^4 = 5x^4y^2+8y^4 \color{green}{-9xy} $$ |