Tap the blue circles to see an explanation.
| $$ \begin{aligned}5x^2+7x-\frac{1}{2}(10x^2-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^2+7x-\frac{10x^2-4}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14x+4}{2}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{2} $ by $ 10x^2-4 $ to get $ \dfrac{ 10x^2-4 }{ 2 } $. Step 1: Write $ 10x^2-4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot 10x^2-4 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{10x^2-4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( 10x^2-4 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10x^2-4 }{ 2 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{10x^2-4}{2} $ from $ 5x^2+7x $ to get $ \dfrac{ \color{purple}{ 14x+4 } }{ 2 }$. Step 1: Write $ 5x^2+7x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |