| $$ \begin{aligned}\frac{5p^2-25p-70}{7p^2-50p+7}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5p+10}{7p-1}\end{aligned} $$ | |
| ① | Simplify $ \dfrac{5p^2-25p-70}{7p^2-50p+7} $ to $ \dfrac{5p+10}{7p-1} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{p-7}$. $$ \begin{aligned} \frac{5p^2-25p-70}{7p^2-50p+7} & =\frac{ \left( 5p+10 \right) \cdot \color{blue}{ \left( p-7 \right) }}{ \left( 7p-1 \right) \cdot \color{blue}{ \left( p-7 \right) }} = \\[1ex] &= \frac{5p+10}{7p-1} \end{aligned} $$ |