Tap the blue circles to see an explanation.
| $$ \begin{aligned}5n\cdot3+2n\cdot2+2-(n\cdot3+3n\cdot2-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}15n+4n+2-(3n+6n-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}19n+2-(9n-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}19n+2-9n+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}10n+4\end{aligned} $$ | |
| ① | $$ 5 n \cdot 3 = 15 n $$ |
| ② | $$ 2 n \cdot 2 = 4 n $$$$ 3 n \cdot 2 = 6 n $$ |
| ③ | Combine like terms: $$ \color{blue}{15n} + \color{blue}{4n} +2 = \color{blue}{19n} +2 $$Combine like terms: $$ \color{blue}{3n} + \color{blue}{6n} -2 = \color{blue}{9n} -2 $$ |
| ④ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 9n-2 \right) = -9n+2 $$ |
| ⑤ | Combine like terms: $$ \color{blue}{19n} + \color{red}{2} \color{blue}{-9n} + \color{red}{2} = \color{blue}{10n} + \color{red}{4} $$ |