Tap the blue circles to see an explanation.
| $$ \begin{aligned}5\cdot10^4+7\cdot10^3+4\cdot10^2+0\cdot10^1+2\cdot10^0& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5\cdot10000+7\cdot1000+4\cdot100+0\cdot10+2\cdot1 \xlongequal{ } \\[1 em] & \xlongequal{ }50000+7000+4000+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}50000+7000+400+0+2 \xlongequal{ } \\[1 em] & \xlongequal{ }50000+7000+4000+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}57402\end{aligned} $$ | |
| ① | A polynomial raised to the power of one equals itself.A non-zero polynomial raised to the power of 0 equals 1. |
| ② | $$ 5 \cdot 10000 = 50000 $$ |
| ③ | $$ 7 \cdot 1000 = 7000 $$ |
| ④ | $$ 4 \cdot 100 = 400 $$ |
| ⑤ | $$ 0 \cdot 10 = 0 $$ |
| ⑥ | Combine like terms: $$ \color{blue}{50000} + \color{red}{7000} + \color{green}{400} \color{orange}{0} + \color{orange}{2} = \color{orange}{57402} $$ |