Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4zv\cdot2+3zp-8p\cdot2)v\cdot2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(8vz+3pz-16p)v\cdot2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(8v^2z+3pvz-16pv)\cdot2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}16v^2z+6pvz-32pv \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}6pvz+16v^2z-32pv\end{aligned} $$ | |
| ① | $$ 4 z v \cdot 2 = 8 v z $$ |
| ② | $$ 8 p \cdot 2 = 16 p $$ |
| ③ | $$ \left( \color{blue}{8vz+3pz-16p}\right) \cdot v = 8v^2z+3pvz-16pv $$ |
| ④ | $$ \left( \color{blue}{8v^2z+3pvz-16pv}\right) \cdot 2 = 16v^2z+6pvz-32pv $$ |
| ⑤ | Combine like terms: $$ 6pvz+16v^2z-32pv = 6pvz+16v^2z-32pv $$ |