Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4x+3)(-3x^2-5x+10)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-12x^3-20x^2+40x-9x^2-15x+30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-12x^3-29x^2+25x+30\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4x+3}\right) $ by each term in $ \left( -3x^2-5x+10\right) $. $$ \left( \color{blue}{4x+3}\right) \cdot \left( -3x^2-5x+10\right) = -12x^3-20x^2+40x-9x^2-15x+30 $$ |
| ② | Combine like terms: $$ -12x^3 \color{blue}{-20x^2} + \color{red}{40x} \color{blue}{-9x^2} \color{red}{-15x} +30 = -12x^3 \color{blue}{-29x^2} + \color{red}{25x} +30 $$ |