Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4x-3)(x+6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2+24x-3x-18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2+21x-18\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4x-3}\right) $ by each term in $ \left( x+6\right) $. $$ \left( \color{blue}{4x-3}\right) \cdot \left( x+6\right) = 4x^2+24x-3x-18 $$ |
| ② | Combine like terms: $$ 4x^2+ \color{blue}{24x} \color{blue}{-3x} -18 = 4x^2+ \color{blue}{21x} -18 $$ |