Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4x-3)(x^2-5x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^3-20x^2+12x-3x^2+15x-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3-23x^2+27x-9\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4x-3}\right) $ by each term in $ \left( x^2-5x+3\right) $. $$ \left( \color{blue}{4x-3}\right) \cdot \left( x^2-5x+3\right) = 4x^3-20x^2+12x-3x^2+15x-9 $$ |
| ② | Combine like terms: $$ 4x^3 \color{blue}{-20x^2} + \color{red}{12x} \color{blue}{-3x^2} + \color{red}{15x} -9 = 4x^3 \color{blue}{-23x^2} + \color{red}{27x} -9 $$ |