Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4x-3)(16x^2+12x+9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}64x^3+48x^2+36x-48x^2-36x-27 \xlongequal{ } \\[1 em] & \xlongequal{ }64x^3+ \cancel{48x^2}+ \cancel{36x} -\cancel{48x^2} -\cancel{36x}-27 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}64x^3-27\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4x-3}\right) $ by each term in $ \left( 16x^2+12x+9\right) $. $$ \left( \color{blue}{4x-3}\right) \cdot \left( 16x^2+12x+9\right) = \\ = 64x^3+ \cancel{48x^2}+ \cancel{36x} -\cancel{48x^2} -\cancel{36x}-27 $$ |
| ② | Combine like terms: $$ 64x^3+ \, \color{blue}{ \cancel{48x^2}} \,+ \, \color{green}{ \cancel{36x}} \, \, \color{blue}{ -\cancel{48x^2}} \, \, \color{green}{ -\cancel{36x}} \,-27 = 64x^3-27 $$ |