Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4x^2+6x+12)(x+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^3+28x^2+6x^2+42x+12x+84 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3+34x^2+54x+84\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4x^2+6x+12}\right) $ by each term in $ \left( x+7\right) $. $$ \left( \color{blue}{4x^2+6x+12}\right) \cdot \left( x+7\right) = 4x^3+28x^2+6x^2+42x+12x+84 $$ |
| ② | Combine like terms: $$ 4x^3+ \color{blue}{28x^2} + \color{blue}{6x^2} + \color{red}{42x} + \color{red}{12x} +84 = 4x^3+ \color{blue}{34x^2} + \color{red}{54x} +84 $$ |