Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4x^2-9x-9)(4x+6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16x^3+24x^2-36x^2-54x-36x-54 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}16x^3-12x^2-90x-54\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4x^2-9x-9}\right) $ by each term in $ \left( 4x+6\right) $. $$ \left( \color{blue}{4x^2-9x-9}\right) \cdot \left( 4x+6\right) = 16x^3+24x^2-36x^2-54x-36x-54 $$ |
| ② | Combine like terms: $$ 16x^3+ \color{blue}{24x^2} \color{blue}{-36x^2} \color{red}{-54x} \color{red}{-36x} -54 = 16x^3 \color{blue}{-12x^2} \color{red}{-90x} -54 $$ |