Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4x^2-4y^2)(3x^2+2y^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12x^4+8x^2y^2-12x^2y^2-8y^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12x^4-4x^2y^2-8y^4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4x^2-4y^2}\right) $ by each term in $ \left( 3x^2+2y^2\right) $. $$ \left( \color{blue}{4x^2-4y^2}\right) \cdot \left( 3x^2+2y^2\right) = 12x^4+8x^2y^2-12x^2y^2-8y^4 $$ |
| ② | Combine like terms: $$ 12x^4+ \color{blue}{8x^2y^2} \color{blue}{-12x^2y^2} -8y^4 = 12x^4 \color{blue}{-4x^2y^2} -8y^4 $$ |