Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4x^2-16x+17)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}16x^4-128x^3+392x^2-544x+289\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4x^2-16x+17}\right) $ by each term in $ \left( 4x^2-16x+17\right) $. $$ \left( \color{blue}{4x^2-16x+17}\right) \cdot \left( 4x^2-16x+17\right) = 16x^4-64x^3+68x^2-64x^3+256x^2-272x+68x^2-272x+289 $$ |
| ② | Combine like terms: $$ 16x^4 \color{blue}{-64x^3} + \color{red}{68x^2} \color{blue}{-64x^3} + \color{green}{256x^2} \color{orange}{-272x} + \color{green}{68x^2} \color{orange}{-272x} +289 = \\ = 16x^4 \color{blue}{-128x^3} + \color{green}{392x^2} \color{orange}{-544x} +289 $$ |