Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4w+b-1)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}b^2+8bw+16w^2-2b-8w+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4w+b-1}\right) $ by each term in $ \left( 4w+b-1\right) $. $$ \left( \color{blue}{4w+b-1}\right) \cdot \left( 4w+b-1\right) = 16w^2+4bw-4w+4bw+b^2-b-4w-b+1 $$ |
| ② | Combine like terms: $$ 16w^2+ \color{blue}{4bw} \color{red}{-4w} + \color{blue}{4bw} +b^2 \color{green}{-b} \color{red}{-4w} \color{green}{-b} +1 = b^2+ \color{blue}{8bw} +16w^2 \color{green}{-2b} \color{red}{-8w} +1 $$ |