Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4+3x-2x)(-2+2x-3x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x+4)(-x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x^2-2x-4x-8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-x^2-6x-8\end{aligned} $$ | |
| ① | Combine like terms: $$ 4+ \color{blue}{3x} \color{blue}{-2x} = \color{blue}{x} +4 $$Combine like terms: $$ -2+ \color{blue}{2x} \color{blue}{-3x} = \color{blue}{-x} -2 $$ |
| ② | Multiply each term of $ \left( \color{blue}{x+4}\right) $ by each term in $ \left( -x-2\right) $. $$ \left( \color{blue}{x+4}\right) \cdot \left( -x-2\right) = -x^2-2x-4x-8 $$ |
| ③ | Combine like terms: $$ -x^2 \color{blue}{-2x} \color{blue}{-4x} -8 = -x^2 \color{blue}{-6x} -8 $$ |