Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4m^5-5m^6)(4m^5+5m^6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16m^{10}+20m^{11}-20m^{11}-25m^{12} \xlongequal{ } \\[1 em] & \xlongequal{ }16m^{10}+ \cancel{20m^{11}} -\cancel{20m^{11}}-25m^{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-25m^{12}+16m^{10}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4m^5-5m^6}\right) $ by each term in $ \left( 4m^5+5m^6\right) $. $$ \left( \color{blue}{4m^5-5m^6}\right) \cdot \left( 4m^5+5m^6\right) = \\ = 16m^{10}+ \cancel{20m^{11}} -\cancel{20m^{11}}-25m^{12} $$ |
| ② | Combine like terms: $$ 16m^{10}+ \, \color{blue}{ \cancel{20m^{11}}} \, \, \color{blue}{ -\cancel{20m^{11}}} \,-25m^{12} = -25m^{12}+16m^{10} $$ |