Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4g-3)(g+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4g^2+12g-3g-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4g^2+9g-9\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4g-3}\right) $ by each term in $ \left( g+3\right) $. $$ \left( \color{blue}{4g-3}\right) \cdot \left( g+3\right) = 4g^2+12g-3g-9 $$ |
| ② | Combine like terms: $$ 4g^2+ \color{blue}{12g} \color{blue}{-3g} -9 = 4g^2+ \color{blue}{9g} -9 $$ |