Tap the blue circles to see an explanation.
| $$ \begin{aligned}47.4\cdot(0.205-x)\cdot(0.13-2x)\cdot(0.13-2x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(0-47x)\cdot(0.13-2x)\cdot(0.13-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(0+0x+0x+94x^2)\cdot(0.13-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}94x^2\cdot(0.13-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}0x^2-188x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-188x^3\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{47} $ by $ \left( 0-x\right) $ $$ \color{blue}{47} \cdot \left( 0-x\right) = 0-47x $$ |
| ② | Multiply each term of $ \left( \color{blue}{0-47x}\right) $ by each term in $ \left( 0-2x\right) $. $$ \left( \color{blue}{0-47x}\right) \cdot \left( 0-2x\right) = 0 \cancel{0x} \cancel{0x}+94x^2 $$ |
| ③ | Combine like terms: $$ 0 \, \color{blue}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x}} \,+94x^2 = 94x^2 $$ |
| ④ | Multiply $ \color{blue}{94x^2} $ by $ \left( 0-2x\right) $ $$ \color{blue}{94x^2} \cdot \left( 0-2x\right) = 0x^2-188x^3 $$ |
| ⑤ | Combine like terms: $$ -188x^3 = -188x^3 $$ |