Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4-x)\cdot(-1-x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-4-4x+x+x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-3x-4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4-x}\right) $ by each term in $ \left( -1-x\right) $. $$ \left( \color{blue}{4-x}\right) \cdot \left( -1-x\right) = -4-4x+x+x^2 $$ |
| ② | Combine like terms: $$ -4 \color{blue}{-4x} + \color{blue}{x} +x^2 = x^2 \color{blue}{-3x} -4 $$ |