Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4}{5}(x-2)-\frac{1}{6}(3x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4x-8}{5}-\frac{3x-4}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{9x-28}{30}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{4}{5} $ by $ x-2 $ to get $ \dfrac{ 4x-8 }{ 5 } $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4}{5} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{4}{5} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4 \cdot \left( x-2 \right) }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x-8 }{ 5 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{6} $ by $ 3x-4 $ to get $ \dfrac{ 3x-4 }{ 6 } $. Step 1: Write $ 3x-4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{6} \cdot 3x-4 & \xlongequal{\text{Step 1}} \frac{1}{6} \cdot \frac{3x-4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( 3x-4 \right) }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x-4 }{ 6 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{3x-4}{6} $ from $ \dfrac{4x-8}{5} $ to get $ \dfrac{ \color{purple}{ 9x-28 } }{ 30 }$. To subtract raitonal expressions, both fractions must have the same denominator. |