| $$ \begin{aligned}(3y^3+8)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9y^6+48y^3+64\end{aligned} $$ | |
| ① | Find $ \left(3y^3+8\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3y^3 } $ and $ B = \color{red}{ 8 }$. $$ \begin{aligned}\left(3y^3+8\right)^2 = \color{blue}{\left( 3y^3 \right)^2} +2 \cdot 3y^3 \cdot 8 + \color{red}{8^2} = 9y^6+48y^3+64\end{aligned} $$ |