Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x+9)(4x^2+8x+12)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12x^3+24x^2+36x+36x^2+72x+108 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12x^3+60x^2+108x+108\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3x+9}\right) $ by each term in $ \left( 4x^2+8x+12\right) $. $$ \left( \color{blue}{3x+9}\right) \cdot \left( 4x^2+8x+12\right) = 12x^3+24x^2+36x+36x^2+72x+108 $$ |
| ② | Combine like terms: $$ 12x^3+ \color{blue}{24x^2} + \color{red}{36x} + \color{blue}{36x^2} + \color{red}{72x} +108 = 12x^3+ \color{blue}{60x^2} + \color{red}{108x} +108 $$ |