Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x+5)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2+3x+5x+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2+8x+5\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3x+5}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{3x+5}\right) \cdot \left( x+1\right) = 3x^2+3x+5x+5 $$ |
| ② | Combine like terms: $$ 3x^2+ \color{blue}{3x} + \color{blue}{5x} +5 = 3x^2+ \color{blue}{8x} +5 $$ |