Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x+4)(x+3)(x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x^2+9x+4x+12)(x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(3x^2+13x+12)(x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3x^3-6x^2+13x^2-26x+12x-24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}3x^3+7x^2-14x-24\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3x+4}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{3x+4}\right) \cdot \left( x+3\right) = 3x^2+9x+4x+12 $$ |
| ② | Combine like terms: $$ 3x^2+ \color{blue}{9x} + \color{blue}{4x} +12 = 3x^2+ \color{blue}{13x} +12 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{3x^2+13x+12}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{3x^2+13x+12}\right) \cdot \left( x-2\right) = 3x^3-6x^2+13x^2-26x+12x-24 $$ |
| ④ | Combine like terms: $$ 3x^3 \color{blue}{-6x^2} + \color{blue}{13x^2} \color{red}{-26x} + \color{red}{12x} -24 = 3x^3+ \color{blue}{7x^2} \color{red}{-14x} -24 $$ |