Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x+3b-1)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9b^2+18bx+9x^2-6b-6x+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3x+3b-1}\right) $ by each term in $ \left( 3x+3b-1\right) $. $$ \left( \color{blue}{3x+3b-1}\right) \cdot \left( 3x+3b-1\right) = 9x^2+9bx-3x+9bx+9b^2-3b-3x-3b+1 $$ |
| ② | Combine like terms: $$ 9x^2+ \color{blue}{9bx} \color{red}{-3x} + \color{blue}{9bx} +9b^2 \color{green}{-3b} \color{red}{-3x} \color{green}{-3b} +1 = 9b^2+ \color{blue}{18bx} +9x^2 \color{green}{-6b} \color{red}{-6x} +1 $$ |