Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x+2)(5x^2+4y+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}15x^3+12xy+21x+10x^2+8y+14 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}15x^3+10x^2+12xy+21x+8y+14\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3x+2}\right) $ by each term in $ \left( 5x^2+4y+7\right) $. $$ \left( \color{blue}{3x+2}\right) \cdot \left( 5x^2+4y+7\right) = 15x^3+12xy+21x+10x^2+8y+14 $$ |
| ② | Combine like terms: $$ 15x^3+10x^2+12xy+21x+8y+14 = 15x^3+10x^2+12xy+21x+8y+14 $$ |