Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x+10)(-3x\cdot2+x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x+10)(-6x+x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(3x+10)(-5x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-15x^2-9x-50x-30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-15x^2-59x-30\end{aligned} $$ | |
| ① | $$ 3 x \cdot 2 = 6 x $$ |
| ② | Combine like terms: $$ \color{blue}{-6x} + \color{blue}{x} -3 = \color{blue}{-5x} -3 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{3x+10}\right) $ by each term in $ \left( -5x-3\right) $. $$ \left( \color{blue}{3x+10}\right) \cdot \left( -5x-3\right) = -15x^2-9x-50x-30 $$ |
| ④ | Combine like terms: $$ -15x^2 \color{blue}{-9x} \color{blue}{-50x} -30 = -15x^2 \color{blue}{-59x} -30 $$ |