Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x+1)^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}81x^4+108x^3+54x^2+12x+1\end{aligned} $$ | |
| ① | $$ (3x+1)^4 = (3x+1)^2 \cdot (3x+1)^2 $$ |
| ② | Find $ \left(3x+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(3x+1\right)^2 = \color{blue}{\left( 3x \right)^2} +2 \cdot 3x \cdot 1 + \color{red}{1^2} = 9x^2+6x+1\end{aligned} $$ |
| ③ | Multiply each term of $ \left( \color{blue}{9x^2+6x+1}\right) $ by each term in $ \left( 9x^2+6x+1\right) $. $$ \left( \color{blue}{9x^2+6x+1}\right) \cdot \left( 9x^2+6x+1\right) = 81x^4+54x^3+9x^2+54x^3+36x^2+6x+9x^2+6x+1 $$ |
| ④ | Combine like terms: $$ 81x^4+ \color{blue}{54x^3} + \color{red}{9x^2} + \color{blue}{54x^3} + \color{green}{36x^2} + \color{orange}{6x} + \color{green}{9x^2} + \color{orange}{6x} +1 = \\ = 81x^4+ \color{blue}{108x^3} + \color{green}{54x^2} + \color{orange}{12x} +1 $$ |