Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x+1)(x+1)(x-2)(3x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x^2+3x+x+1)(x-2)(3x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(3x^2+4x+1)(x-2)(3x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(3x^3-6x^2+4x^2-8x+x-2)(3x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(3x^3-2x^2-7x-2)(3x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}9x^4-12x^3-17x^2+8x+4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3x+1}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{3x+1}\right) \cdot \left( x+1\right) = 3x^2+3x+x+1 $$ |
| ② | Combine like terms: $$ 3x^2+ \color{blue}{3x} + \color{blue}{x} +1 = 3x^2+ \color{blue}{4x} +1 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{3x^2+4x+1}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{3x^2+4x+1}\right) \cdot \left( x-2\right) = 3x^3-6x^2+4x^2-8x+x-2 $$ |
| ④ | Combine like terms: $$ 3x^3 \color{blue}{-6x^2} + \color{blue}{4x^2} \color{red}{-8x} + \color{red}{x} -2 = 3x^3 \color{blue}{-2x^2} \color{red}{-7x} -2 $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{3x^3-2x^2-7x-2}\right) $ by each term in $ \left( 3x-2\right) $. $$ \left( \color{blue}{3x^3-2x^2-7x-2}\right) \cdot \left( 3x-2\right) = 9x^4-6x^3-6x^3+4x^2-21x^2+14x-6x+4 $$ |
| ⑥ | Combine like terms: $$ 9x^4 \color{blue}{-6x^3} \color{blue}{-6x^3} + \color{red}{4x^2} \color{red}{-21x^2} + \color{green}{14x} \color{green}{-6x} +4 = 9x^4 \color{blue}{-12x^3} \color{red}{-17x^2} + \color{green}{8x} +4 $$ |