Tap the blue circles to see an explanation.
| $$ \begin{aligned}3x\cdot2+x+5+8-6x+6x\cdot2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x+x+5+8-6x+12x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7x+5+6x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}13x+13\end{aligned} $$ | |
| ① | $$ 3 x \cdot 2 = 6 x $$$$ 6 x \cdot 2 = 12 x $$ |
| ② | Combine like terms: $$ \color{blue}{6x} + \color{blue}{x} +5 = \color{blue}{7x} +5 $$Combine like terms: $$ 8 \color{blue}{-6x} + \color{blue}{12x} = \color{blue}{6x} +8 $$ |
| ③ | Combine like terms: $$ \color{blue}{7x} + \color{red}{5} + \color{blue}{6x} + \color{red}{8} = \color{blue}{13x} + \color{red}{13} $$ |