Tap the blue circles to see an explanation.
| $$ \begin{aligned}3x\cdot2-8x+6+2-2x+4x\cdot2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x-8x+6+2-2x+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x+6+6x+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x+8\end{aligned} $$ | |
| ① | $$ 3 x \cdot 2 = 6 x $$$$ 4 x \cdot 2 = 8 x $$ |
| ② | Combine like terms: $$ \color{blue}{6x} \color{blue}{-8x} +6 = \color{blue}{-2x} +6 $$Combine like terms: $$ 2 \color{blue}{-2x} + \color{blue}{8x} = \color{blue}{6x} +2 $$ |
| ③ | Combine like terms: $$ \color{blue}{-2x} + \color{red}{6} + \color{blue}{6x} + \color{red}{2} = \color{blue}{4x} + \color{red}{8} $$ |