Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x-5)(3x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9x^2+15x-15x-25 \xlongequal{ } \\[1 em] & \xlongequal{ }9x^2+ \cancel{15x} -\cancel{15x}-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9x^2-25\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3x-5}\right) $ by each term in $ \left( 3x+5\right) $. $$ \left( \color{blue}{3x-5}\right) \cdot \left( 3x+5\right) = 9x^2+ \cancel{15x} -\cancel{15x}-25 $$ |
| ② | Combine like terms: $$ 9x^2+ \, \color{blue}{ \cancel{15x}} \, \, \color{blue}{ -\cancel{15x}} \,-25 = 9x^2-25 $$ |