Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x-2)(5x^2+6x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}15x^3+18x^2-15x-10x^2-12x+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}15x^3+8x^2-27x+10\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3x-2}\right) $ by each term in $ \left( 5x^2+6x-5\right) $. $$ \left( \color{blue}{3x-2}\right) \cdot \left( 5x^2+6x-5\right) = 15x^3+18x^2-15x-10x^2-12x+10 $$ |
| ② | Combine like terms: $$ 15x^3+ \color{blue}{18x^2} \color{red}{-15x} \color{blue}{-10x^2} \color{red}{-12x} +10 = 15x^3+ \color{blue}{8x^2} \color{red}{-27x} +10 $$ |