Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3x-\frac{1}{4})(4x+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{12x-1}{4}(4x+8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{48x^2+92x-8}{4}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{1}{4} $ from $ 3x $ to get $ \dfrac{ \color{purple}{ 12x-1 } }{ 4 }$. Step 1: Write $ 3x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $ \dfrac{12x-1}{4} $ by $ 4x+8 $ to get $ \dfrac{48x^2+92x-8}{4} $. Step 1: Write $ 4x+8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{12x-1}{4} \cdot 4x+8 & \xlongequal{\text{Step 1}} \frac{12x-1}{4} \cdot \frac{4x+8}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 12x-1 \right) \cdot \left( 4x+8 \right) }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 48x^2+96x-4x-8 }{ 4 } = \frac{48x^2+92x-8}{4} \end{aligned} $$ |