Tap the blue circles to see an explanation.
| $$ \begin{aligned}3x^2-2x+3x+5y-(2y-4x^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2+x+5y-(2y-4x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2+x+5y-2y+4x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}7x^2+x+3y\end{aligned} $$ | |
| ① | Combine like terms: $$ 3x^2 \color{blue}{-2x} + \color{blue}{3x} +5y = 3x^2+ \color{blue}{x} +5y $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2y-4x^2 \right) = -2y+4x^2 $$ |
| ③ | Combine like terms: $$ \color{blue}{3x^2} +x+ \color{red}{5y} \color{red}{-2y} + \color{blue}{4x^2} = \color{blue}{7x^2} +x+ \color{red}{3y} $$ |