Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3 \cdot \frac{x}{6}-4\frac{y}{3}x\cdot4)(4\frac{x}{5}x^2+3\frac{y}{x})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(\frac{3x}{6}-\frac{4y}{3}x\cdot4)(\frac{4x}{5}x^2+\frac{3y}{x}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}(\frac{3x}{6}-\frac{4xy}{3}\cdot4)(\frac{4x^3}{5}+\frac{3y}{x}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}(\frac{3x}{6}-\frac{16xy}{3})\frac{4x^4+15y}{5x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} } }}}\frac{-32xy+3x}{6}\frac{4x^4+15y}{5x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle14}{\textcircled {14}} } }}}\frac{-128x^5y+12x^5-480xy^2+45xy}{30x}\end{aligned} $$ | |
| ① | Multiply $3$ by $ \dfrac{x}{6} $ to get $ \dfrac{ 3x }{ 6 } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{6} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{6} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot 6 } \xlongequal{\text{Step 3}} \frac{ 3x }{ 6 } \end{aligned} $$ |
| ② | Multiply $4$ by $ \dfrac{y}{3} $ to get $ \dfrac{ 4y }{ 3 } $. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{y}{3} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{y}{3} \xlongequal{\text{Step 2}} \frac{ 4 \cdot y }{ 1 \cdot 3 } \xlongequal{\text{Step 3}} \frac{ 4y }{ 3 } \end{aligned} $$ |
| ③ | Multiply $4$ by $ \dfrac{x}{5} $ to get $ \dfrac{ 4x }{ 5 } $. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{x}{5} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{x}{5} \xlongequal{\text{Step 2}} \frac{ 4 \cdot x }{ 1 \cdot 5 } \xlongequal{\text{Step 3}} \frac{ 4x }{ 5 } \end{aligned} $$ |
| ④ | Multiply $3$ by $ \dfrac{y}{x} $ to get $ \dfrac{ 3y }{ x } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{y}{x} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{y}{x} \xlongequal{\text{Step 2}} \frac{ 3 \cdot y }{ 1 \cdot x } \xlongequal{\text{Step 3}} \frac{ 3y }{ x } \end{aligned} $$ |
| ⑤ | Multiply $3$ by $ \dfrac{x}{6} $ to get $ \dfrac{ 3x }{ 6 } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{6} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{6} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot 6 } \xlongequal{\text{Step 3}} \frac{ 3x }{ 6 } \end{aligned} $$ |
| ⑥ | Multiply $ \dfrac{4y}{3} $ by $ x $ to get $ \dfrac{ 4xy }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4y}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{4y}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4y \cdot x }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4xy }{ 3 } \end{aligned} $$ |
| ⑦ | Multiply $ \dfrac{4x}{5} $ by $ x^2 $ to get $ \dfrac{ 4x^3 }{ 5 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4x}{5} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{4x}{5} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4x \cdot x^2 }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x^3 }{ 5 } \end{aligned} $$ |
| ⑧ | Multiply $3$ by $ \dfrac{y}{x} $ to get $ \dfrac{ 3y }{ x } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{y}{x} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{y}{x} \xlongequal{\text{Step 2}} \frac{ 3 \cdot y }{ 1 \cdot x } \xlongequal{\text{Step 3}} \frac{ 3y }{ x } \end{aligned} $$ |
| ⑨ | Multiply $3$ by $ \dfrac{x}{6} $ to get $ \dfrac{ 3x }{ 6 } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{6} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{6} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot 6 } \xlongequal{\text{Step 3}} \frac{ 3x }{ 6 } \end{aligned} $$ |
| ⑩ | Multiply $ \dfrac{4xy}{3} $ by $ 4 $ to get $ \dfrac{ 16xy }{ 3 } $. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4xy}{3} \cdot 4 & \xlongequal{\text{Step 1}} \frac{4xy}{3} \cdot \frac{4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4xy \cdot 4 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 16xy }{ 3 } \end{aligned} $$ |
| ⑪ | Add $ \dfrac{4x^3}{5} $ and $ \dfrac{3y}{x} $ to get $ \dfrac{ \color{purple}{ 4x^4+15y } }{ 5x }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑫ | Subtract $ \dfrac{16xy}{3} $ from $ \dfrac{3x}{6} $ to get $ \dfrac{ \color{purple}{ -32xy+3x } }{ 6 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑬ | Add $ \dfrac{4x^3}{5} $ and $ \dfrac{3y}{x} $ to get $ \dfrac{ \color{purple}{ 4x^4+15y } }{ 5x }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑭ | Multiply $ \dfrac{-32xy+3x}{6} $ by $ \dfrac{4x^4+15y}{5x} $ to get $ \dfrac{-128x^5y+12x^5-480xy^2+45xy}{30x} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{-32xy+3x}{6} \cdot \frac{4x^4+15y}{5x} & \xlongequal{\text{Step 1}} \frac{ \left( -32xy+3x \right) \cdot \left( 4x^4+15y \right) }{ 6 \cdot 5x } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ -128x^5y-480xy^2+12x^5+45xy }{ 30x } = \frac{-128x^5y+12x^5-480xy^2+45xy}{30x} \end{aligned} $$ |